The Bridge to A level

Diagnosis

Question 1

Solve $x^{2}+6 x+8=0$

Question 2

Solve the equation $y^{2}-7 y+12=0$
Hence solve the equation $\mathrm{x}^{4}-7 \mathrm{x}^{2}+12=0$

Question 3

(i) Express $\mathrm{x}^{2}-6 \mathrm{x}+2$ in the form $(\mathrm{x}-\mathrm{a})^{2}-\mathrm{b}$
(ii) State the coordinates of the minimum value on the graph of $y=x^{2}-6 x+2$

Total / 10

2 Changing the subject

Question 1

Make v the subject of the formula $\mathrm{E}=\frac{1}{2} \mathrm{mv}^{2}$

Question 2

Make r the subject of the formula $V=\frac{4}{3} \Pi r^{2}$

Question 3

Make c the subject of the formula $\mathrm{P}=\frac{C}{C+4}$
\square

Question 1

Find the coordinates of the point of intersection of the lines $y=3 x+1$ and $x+3 y=6$

Question 2

Find the coordinates of the point of intersection of the lines $5 x+2 y=20$ and $y=5-x$

Question 3

Solve the simultaneous equations

$$
\begin{align*}
& x^{2}+y^{2}=5 \\
& y=3 x+1 \tag{4}
\end{align*}
$$

4 Surds

Question 1

(i) \quad Simplify $(3+\sqrt{2})(3-\sqrt{2})$
(ii) Express $\frac{1+\sqrt{2}}{3-\sqrt{2}}$ in the form $a+b \sqrt{2}$ where a and b are rational

Question 2

(i) Simplify $5 \sqrt{8}+4 \sqrt{50}$. Express your answer in the form $a \sqrt{b}$ where a and b are integers and b is as small as possible.
(ii) Express $\frac{\sqrt{3}}{6-\sqrt{3}}$ in the form $p+q \sqrt{3}$ where p and q are rational

5

Indices

Question 1

Simplify the following
(i) a^{0}
(ii) $a^{6} \div a^{-2}$
(iii) $\left(9 a^{6} b^{2}\right)^{-0.5}$

Question 2

(i) Find the value of $\left(\frac{1}{25}\right)-0.5$
(ii) Simplify $\frac{\left(2 x^{2} y^{3} z\right)^{5}}{4 y^{2} z}$

Total / 10

\square

$6 \quad$ Properties of Lines

Question 1

A $(0,2), B(7,9)$ and $C(6,10)$ are three points.
(i) Show that AB and BC are perpendicular
(ii) Find the length of AC

Question 2

Find, in the form $y=m x+c$, the equation of the line passing through $A(3,7)$ and $B(5,-1)$.
Show that the midpoint of AB lies on the line $x+2 y=10$
\square

7

Sketching curves

Question 1

In the cubic polynomial $f(x)$, the coefficient of x^{3} is 1 . The roots of $f(x)=0$ are $-1,2$ and 5 .
Sketch the graph of $y=f(x)$

Question 2

Sketch the graph of $y=9-x^{2}$

Question 3

The graph below shows the graph of $\mathrm{y}=\frac{1}{x}$
On the same axes plot the graph of $y=x^{2}-5 x+5$ for $0 \leq x \leq 5$

\square

8 Transformation of functions

Question 1

The curve $y=x^{2}-4$ is translated by $\binom{2}{0}$
Write down an equation for the translated curve. You need not simplify your answer.

Question 2

This diagram shows graphs A and B.

(i) State the transformation which maps graph A onto graph B
(ii) The equation of graph A is $y=f(x)$.

Which one of the following is the equation of graph B ?
$y=f(x)+2$
$y=f(x)-2$
$y=f(x+2)$
$y=f(x-2)$
$y=2 f(x)$
$y=f(x+3)$
$y=f(x-3)$
$y=3 f(x)$

Question 3

(i) Describe the transformation which maps the curve $y=x^{2}$ onto the curve $y=(x+4)^{2}$
(ii) Sketch the graph of $y=x^{2}-4$

9

Trigonometric ratios

Question 1

Sidney places the foot of his ladder on horizontal ground and the top against a vertical wall.
The ladder is 16 feet long.

The foot of the ladder is 4 feet from the base of the wall.

(i) Work out how high up the wall the ladder reaches. Give your answer to 3 significant figures.
(ii) Work out the angle the base of the ladder makes with the ground. Give your answer to 3 significant figures

Question 2

Given that $\cos \theta=\frac{1}{3}$ and Θ is acute, find the exact value of $\tan \Theta$

Question 3

Sketch the graph of $y=\cos x$ for $0 \leq x \leq 360^{\circ}$

Question 1

Not to
scale

For triangle ABC , calculate
(i) the length of BC
(ii) the area of triangle ABC

Question 2

The course for a yacht race is a triangle as shown in the diagram below. The yachts start at A, then travel to B, then to C and finally back to A .

Not to scale

Calculate the total length of the course for this race.

