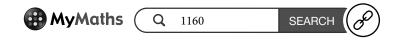
Bridging Unit: Algebra 1

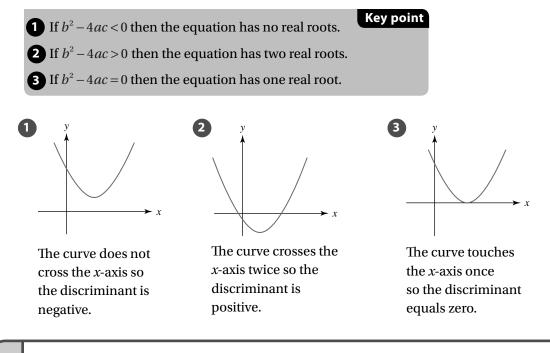
Topic E: The quadratic formula

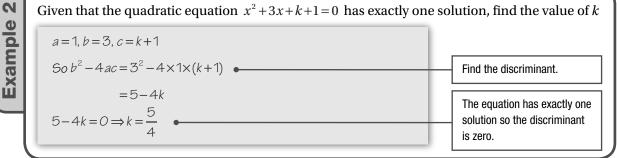
You can solve a quadratic equation using the **quadratic formula**. The quadratic formula can also be used to quickly determine how many roots a quadratic equation has.

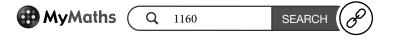

Key point The quadratic formula for $ax^2 + bx + c = 0$ is $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

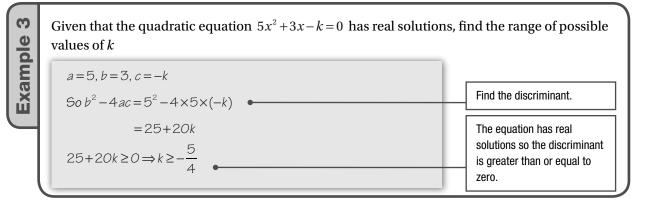
Solve the equation $3x^2 - 5x - 7 = 0$ using the quadratic formula. Φ Substitute into the formula, Exampl a=3, b=-5, c=-7 taking care with negatives. $x = \frac{-(-5)\pm\sqrt{(-5)^2 - 4\times3\times(-7)}}{2\times3}$ Use your calculator to give answer as a decimal: $\frac{5+\sqrt{109}}{6} = 2.57 \text{ and }$ $=\frac{5\pm\sqrt{109}}{6}$ $\frac{5-\sqrt{109}}{6} = -0.91$ = 2.57 or -0.91 (to 2 dp)You can also use the equation solver on your calculator to solve quadratic equations. Try It e the quadratic formula to solve the quadratic equation $7r^2 - 4r - 6 - 0$

Use the quadratic formula to solve the quadratic equation $7x^{-4x-0} = 0$	
•••••••••••••••••••••••••••••••••••••••	

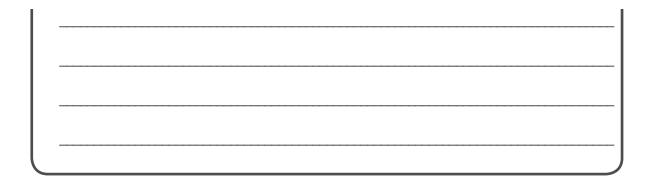

Inside the square root of the quadratic formula you have the expression $b^2 - 4ac$. This expression is called the **discriminant**. You can use the discriminant to determine how many roots the equation has.

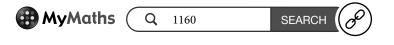

Bridging Unit 1: Algebra 1 The quadratic formula




© Oxford University Press 2018 Acknowledgements: www.oxfordsecondary.co.uk/acknowledgements

Given that the quadratic equation $kx^2 - x + 5 = 0$ has exactly one solution,	Try It 2
find the value of <i>k</i>	


ange of possible va	arues or k		


$b^2 - 4ac = 7^2 - 4 \times (-1) \times (3-k) \bullet \qquad \qquad$	minant.
= 61 - 4k $-4k < 0 \Rightarrow k > \frac{61}{4}$ The equation has solutions so the d is negative.	

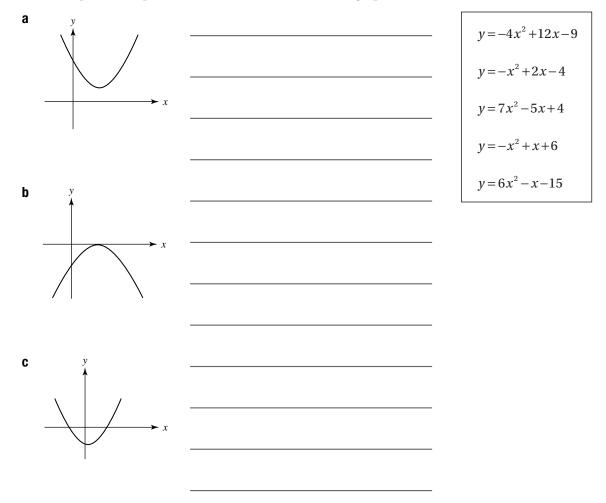
HyMaths	Q	1160	SEARCH	O)
				\smile

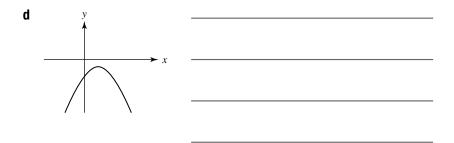
3

© Oxford University Press 2018 Acknowledgements: www.oxfordsecondary.co.uk/acknowledgements

Bridging Unit 1: Algebra 1 The quadratic formula © Oxford University Press 2018 Acknowledgements: www.oxfordsecondary.co.uk/acknowledgements

Bridging Exercise Topic E


1 Use the quadratic formula to solve each of these equations.


а	$7x^2 + 3x - 8 = 0$	
b	$-x^2+4x-2=0$	
C	$x^2 - 12x + 4 = 0$	

2 Work out how many real solutions each of these quadratic equations has.

а	$x^2 - 5x + 7 = 0$	
		· · · · · · · · · · · · · · · · · · ·
h	$7 - 2r - 3r^2 - 0$	
U	7-2x-3x=0	
C	$4x^2 - 28x + 49 = 0$	

3 Choose a possible equation from the box for each of the graphs.

4 Find the value of *k* in each equation given that they each have exactly one solution.

a $3x^2 + 2x - k = 0$

b $kx^2 - x + 4 = 0$

c $2x^2 + 5x + k - 5 = 0$

5 Find the range of possible values of *k* for each equation given that they all have real solutions.

a $x^2 + 3x - 3k = 0$

b $kx^2 - 7x + 4 = 0$

c $-x^2+6x-k-2=0$

6	Find the range of possible values of <i>k</i> for each equation given that they all have no real solutions.

а	$5x^2 - x + 2k = 0$
b	$-kx^2 + 4x + 5 = 0$
C	$6x^2 - 5x + 3 - 2k = 0$