The Bridge to A level

Diagnosis

Mark Scheme

Section	Question	Answer	Marks	Notes
1	1	-2, -4	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$(\mathrm{x} \pm 2)(\mathrm{x} \pm 4)$
	2	$\begin{aligned} & y=3 \text { or } y=4 \text { cao } \\ & x= \pm \sqrt{3} \text { or } x= \pm 2 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \text { B2 } \end{array}$	For $(y-3)(y+4)$ oe eg use of quad form $y=3$ or $y=4$ cao B1 for two roots correct or ft 'their' y B2 for cao
	3(i)	$(x-3)^{2}-7$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { M1A1 } \\ \hline \end{array}$	$\begin{aligned} & (x-3)^{2} \\ & -7 \end{aligned}$
	3(ii)	$(3,-7)$	B1	ft from part (i)
2	1	$\mathrm{v}=\sqrt{\frac{2 E}{m}}$ cao www	B3	Award M1 for a correct first constructive step, M2 for $\mathrm{v}^{2}=\frac{2 E}{m}$ oe
	2	$\mathrm{r}=\sqrt[3]{\frac{3 V}{4 \Pi}}$	B3	Award M2 for $\mathrm{r}^{3}=\frac{3 V}{4 \Pi}$, M1 for cube root of 'their' r^{3}
	3	$\mathrm{C}=\frac{4 P}{1-P} \text { oe }$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{PC}+4 \mathrm{P}=\mathrm{C} \\ & 4 \mathrm{P}=\mathrm{C}-\mathrm{PC} \\ & 4 \mathrm{P}=\mathrm{C}(1-\mathrm{P}) \end{aligned}$
3	1	(0.3,1.9)	$\begin{aligned} & \text { M1 } \\ & \text { A1A1 } \\ & \hline \end{aligned}$	for substitution or for rearrangement one mark each coordinate
	2	$\left(\frac{10}{3}, \frac{5}{3}\right)$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1A1 } \end{aligned}$	for substitution or for rearrangement one mark each coordinate Note: award B2 if roiunded to 1dp or worse
	3	$\left(\frac{2}{5}, \frac{11}{5}\right)$ or $(-1,-2)$ or answer given as $x=, y=$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M1 } \\ \text { A1A1 } \\ \hline \end{array}$	substituting linear into non-linear forming quadratic in x one mark for each set of solutions
4	1(i)	7	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	9-2
	1(ii)	$\frac{5}{7}+\frac{4}{7} \sqrt{2}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	multiplying top and bottom by $3+\sqrt{2}$ $\frac{3+2+3 \sqrt{2}+\sqrt{2}}{7}$ if one (or none) error only
	2(i)	$30 \sqrt{2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	for $\sqrt{ } 8=2 \sqrt{ } 2$ or $\sqrt{50}=5 \sqrt{ } 2$
	2(ii)	$\frac{1}{11}+\frac{2}{11} \sqrt{3}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	multiplying top and bottom by $6+\sqrt{3}$ denominator $=11($ or 33$)$

5	1(i)	1	B1	
	1(ii)	a^{8}	B1	
	1(iii)	$\frac{1}{3 a^{3} b}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & 3 \mathrm{~b} \\ & \mathrm{a}^{3} \\ & \text { inverse } \end{aligned}$
	2(i)	± 5	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	for $\sqrt{25}$ or $\frac{1}{5}$ seen
	2(ii)	$8 x^{10} y^{13} z^{4} \quad\left(\right.$ or $\left.2^{3} x^{10} y^{13} z^{4}\right)$	B3	B2 for 3 elements correct B1 for 2 elements correct
6	1(i)	```\(\operatorname{Grad} \mathrm{AB}=1\) \(\operatorname{Grad} B C=-1\) product of gradients \(=-1\) hence perp```	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { C1 } \end{aligned}$	
	1(ii)	10	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Use of pythagoras
	2	$y=-4 x+19$ Midpoint (4,3) verifying on line $x+2 y=10$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { C1 } \\ & \hline \end{aligned}$	calculating m using $(y-7)=m(x-3)$
7	1	Cubic the correct way up $-1,2$ and 5 indicated on x -axis 10 indicated on y-axis	$\begin{aligned} & \text { G1 } \\ & \text { G1 } \\ & \text { G1 } \end{aligned}$	
	2	Negative quadratic curve Intercept $(0,9)$ Through $(3,0)$ and $(-3,0)$	$\begin{aligned} & \hline \text { G1 } \\ & \text { G1 } \\ & \text { G1 } \end{aligned}$	
	3	Any correct y value calculated $(0,5),(1,1),(2,-1),(3,-1),(4,1)$ and $(5,5)$ calculated Above points plotted Smooth parabola through the points	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \\ & \text { G1 } \\ & \text { G1 } \end{aligned}$	
8	1	$\mathrm{y}=(\mathrm{x}-2)^{2}-4$	B2	M1 if y omitted, or for $\mathrm{y}=(\mathrm{x}+2)^{2}-4$
	2(i)	Translation of $\binom{2}{0}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	
	2(ii)	$y=f(x-2)$	B2	B1 for $\mathrm{y}=\mathrm{f}(\mathrm{x}+2)$
	3(i)	Translation of $\binom{-4}{0}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
	3(ii)	sketch of parabola right way up min at ($0,-4$) and graph through $(-2,0)$ and $(2,0)$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	

9	1(i)	15.5	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Use of Pythagoras
	1(ii)	$\mathrm{x}=75.5^{\circ}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	$\left(\cos x=\frac{4}{16}\right)$ correct ratio and substitution
	2	$\sqrt{8}$ or $2 \sqrt{2}$ (but not $\pm \sqrt{8}$)	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Use iof pythagoras use of $\tan \theta=$ opp / adj
	3	$\begin{aligned} & \text { Smooth curve between } y=1 \\ & \text { and } y=-1 \\ & (90,0) \text { and }(270,0) \\ & (0,1),(180,-1),(360,1) \end{aligned}$	$\begin{aligned} & \hline \text { G1 } \\ & \\ & \text { G1 } \\ & \text { G1 } \end{aligned}$	
10	1(i)	9.0 or 8.96 or 8.960	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	for use of cosine rule for square-rooting 'their' 80.2(8)
	1(ii)	13.3 or better (13.2577..)	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	use of 'their' $0.5 \times 4.1 \times 6.6 \times \sin 108$ correct values ans
	2	$\mathrm{BC}=384$ (or better) Total length $=1034 \mathrm{~m}$ (or better)	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	recognisable attempt at cosine rule $\begin{aligned} & \mathrm{BC}^{2}=348^{2}+302^{2}-2 \times 348 \times 302 \times \cos 72 \\ & \mathrm{BC}=383.86 \ldots \ldots \\ & \text { Total length }=\mathrm{BC}+650 \mathrm{ft} \end{aligned}$

