

The Bridge to A level Diagnosis Mark Scheme

Section	Question	Answer	Marks	Notes
1	1	-2, -4	M1	$(x \pm 2)(x \pm 4)$
			A1	
	2	y = 3 or $y = 4$ cao	M1	For $(y-3)(y+4)$ oe eg use of quad form
			A1	y = 3 or $y = 4$ cao
		$x = \pm \sqrt{3}$ or $x = \pm 2$ cao	B2	B1 for two roots correct or ft 'their' y
				B2 for cao
	3(i)	$(x-3)^2 - 7$	B1	$(x-3)^2$
			M1A1	-7
	3(ii)	(3,-7)	B1	ft from part (i)
2				
2	1	$v = \sqrt{\frac{2E}{m}}$ cao www	B3	Award M1 for a correct first constructive $\frac{2E}{2}$
		\sqrt{m}		step, M2 for $v^2 = \frac{2E}{m}$ oe Award M2 for $r^3 = \frac{3V}{4\pi}$, M1 for cube root
	2	3 3 <i>V</i>	B3	Award M2 for $r^3 = \frac{3V}{2}$. M1 for cube root
		$r = \sqrt[3]{\frac{3V}{4\Pi}}$		of 'their' r^3
	3	$C = \frac{4P}{1-P}$ oe	M1	PC + 4P = C
	5	$C = \frac{1}{1-P}$ de	M1	4P = C - PC
			M1	4P = C(1 - P)
			A1	· · · · · · · · · · · · · · · · · · ·
3	1	(0.3,1.9)	M1	for substitution or for rearrangement
			A1A1	one mark each coordinate
	2	$(\frac{10}{3},\frac{5}{3})$	M1	for substitution or for rearrangement
		3 3	A1A1	one mark each coordinate
				Note: award B2 if roiunded to 1dp or
	2	2 11	N/1	worse
	3	$(\frac{2}{5}, \frac{11}{5})$ or (-1,-2) or answer	M1	substituting linear into non-linear
		given as x=, y=	M1 A1A1	forming quadratic in x one mark for each set of solutions
			AIAI	one mark for each set of solutions
4	1(i)	7	M1	9-2
	1(1)	,	A1	· -
	1(ii)	$\frac{5}{7} + \frac{4}{7}\sqrt{2}$	M1	multiplying top and bottom by $3 + \sqrt{2}$
		7 7 V 2	M1	$3+2+3\sqrt{2}+\sqrt{2}$
			A1	$\frac{3+2+3\sqrt{2}+\sqrt{2}}{7}$ if one (or none) error only
	2(i)	30√2	M1	for $\sqrt{8} = 2\sqrt{2}$ or $\sqrt{50} = 5\sqrt{2}$
			A1	
	2(ii)	$\frac{1}{11} + \frac{2}{11}\sqrt{3}$	M1	multiplying top and bottom by $6 + \sqrt{3}$
		11 11	M1	denominator = 11 (or 33)
			A1	

			1	Partners in excellence
5	1(i)	1	B1	
	1(ii)	a ⁸	B1	
	1(iii)	1	B1	3b
		$\overline{3a^3b}$	B1	a ³
			B1	inverse
	2(i)	±5	M1	for $\sqrt{25}$ or $\frac{1}{5}$ seen
			A1	5 5001
	2(ii)	$8x^{10}y^{13}z^4$ (or $2^3x^{10}y^{13}z^4$)	B3	B2 for 3 elements correct
				B1 for 2 elements correct
6	1(i)	Grad AB = 1	M1	
		Grad BC = -1	M1	
		product of gradients $=$ -1 hence	C1	
		perp		
	1(ii)	10	M1	Use of pythagoras
			A1	
	2	y = -4x + 19 cao	M1	calculating m
			M1	using $(y - 7) = m(x-3)$
			A1	
		Midpoint (4,3)	B1	
		verifying on line $x + 2y = 10$	C1	
7	1	Cubic the correct way up	G1	
		-1, 2 and 5 indicated on x-axis	G1	
		10 indicated on y-axis	G1	
	2	Negative quadratic curve	G1	
		Intercept (0,9)	G1	
		Through (3,0) and (-3,0)	G1	
	3	Any correct y value calculated	B1	
		(0,5), (1,1), (2,-1), (3,-1), (4,1)	B1	
		and (5,5) calculated		
		Above points plotted	G1	
		Smooth parabola through the	G1	
		points		
8	1	$y = (x - 2)^2 - 4$ Translation of	B2	M1 if y omitted, or for $y = (x + 2)^2 - 4$
	2(i)	Translation of	B1	
	Ň	$\binom{2}{0}$	B1	
		0		
	2(ii)	y = f(x - 2)	B2	B1 for $y = f(x + 2)$
	3(i)	Translation of	B1	
		$\begin{pmatrix} -4\\ 0 \end{pmatrix}$	B1	
	2()		D1	
	3(ii)	sketch of parabola right way up	B1	
		min at $(0,-4)$ and graph through	B1	
		(-2,0) and (2,0)		

PiXL

				Partners in excellence
9	1(i)	15.5	M1	Use of Pythagoras
			A1	
	1(ii)	$x = 75.5^{\circ}$	M1	$(\cos x = \frac{4}{16})$ correct ratio and substitution
			A1	16 ⁷ 16 ⁷ 16 ⁷
	2	$\sqrt{8}$ or $2\sqrt{2}$ (but not $\pm \sqrt{8}$)	M1	Use iof pythagoras
			M1	use of $\tan \Theta = \operatorname{opp} / \operatorname{adj}$
			A1	
	3	Smooth curve between $y = 1$	G1	
1		and $y = -1$		
		(90,0) and (270,0)	G1	
		(0,1), (180,-1), (360,1)	G1	
10	1(i)	9.0 or 8.96 or 8.960	M1	for use of cosine rule
			M1	for square-rooting 'their' 80.2(8)
			A1	
	1(ii)	13.3 or better (13.2577)	M1	use of 'their' 0.5 x 4.1 x 6.6 x sin 108
			A1	correct values
			A1	ans
	2	BC = 384 (or better)	M1	recognisable attempt at cosine rule
			M1	$BC^2 = 348^2 + 302^2 - 2x348x302x\cos 72$
		Total length = $1034m$	A1	BC = 383.86
		(or better)	A1	Total length $=$ BC $+$ 650 ft